Question	Answer	Marks	Guidance
1(a)(i)	proton acceptor; M2 does not accept (protons) readily OR less able to accept protons (than strong bases);	2	A alternative words to 'acceptor' e.g. 'receiver' I references to pH A 'hydrogen ion' or ' $\mathrm{H}^{+\prime}$ for proton I accepts fewer/less protons
(a)(ii)	M1 same concentration of both bases; M2 measure their pH ; M3 the higher pH is the stronger base;	3	A suitable method e.g. universal indicator or pH paper or pH meter I litmus or methyl orange or phenolphthalein I titration methods for M2 and M3 A suitable colours of both weak strong bases e.g. ethylamine is (greeny)blue, NaOH is darker blue/purple A alternative methods for M2 and M3 e.g. measure conductivity (M2) and high conductivity is the stronger base (M3) e.g.add aluminium / $\mathrm{Al}(\mathrm{M} 2)$ and stronger base gives faster rate of effervescence/more fizzing/more bubbling (M3)
(b)(i)	```\[{ }_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}\right)_{2} \mathrm{SO}_{4} \] \\ species; balancing;``` the salt is ethylammonium sulfate;	3	A multiples I state symbols A one mark for correct product A close spellings A diethylammonium sulfate

Question	Answer	Marks	Guidance
(b)(ii)	sodium hydroxide / calcium hydroxide / NaOH / Ca(OH) ${ }_{2}$;	1	any Group 1 or Group 2 hydroxide or oxide
(c)(i)	Any two from: (particles move in) random motion; (particles) collide; (particles) move from a region of high concentration to low concentration;	2	A alternative phrases for collide A down a concentration gradient
6(c)(ii)	M2 it has a lower (relative) molecular mass (than HBr); M3 ethylamine diffuses faster (than HBr);	3	A ethylamine is less dense A ethylamine is a lighter molecule but I 'ethylamine is lighter' I ethylamine is a smaller molecule A ethylamine molecules or particles move faster A ECF for M 2 and M 3 if A is given e.g. HBr diffuses faster for M3 because it is a lighter molecule for M2 A ECF for M2 if B is given e.g. they diffuse at same rate for M3 because molecules weigh the same for M2

2 (a (i) two atoms per molecule
(ii) 7 e in outer shell or level / same number of outer electrons / need to gain one electron [1]
(iii) different number of energy levels / different number of electrons
(iv)

halogen	solid, liquid or gas at room temperature	colour
chlorine	gas	yellow / yellow green / green
bromine	liquid	brown / red-brown / orange-brown not: red / orange
iodine	solid	black / grey / silver-grey / purple / violet NOT: blue-black

NOTE: one mark for each vertical column
(b) correct formula, AsF_{3} [1]

3 nbps and 1 bp around all 3 fluorine atoms
3 bps and 1 nbp around arsenic atom
(c) (increased) light increases / causes forward reaction / light causes AgCl reacts with CuCl
(increased) light increases the amount of silver (and so darkens glass)
decrease in light reverses reaction / uses up silver / silver reacts (and so reduces darkness)[1]
[Total: 11]

(a (i)	photosynthesis or a photochemical reaction not an example, question requires a process not devices which convert light into electricity
(ii)	cell accept battery not generator
(b) (i)	correct formula [1]
	cond following marks conditional on correct formula If covalent mark 1 only correct charges $6 x$ and 20 around anion do NOT penalise for incorrect coding ignore electrons around potassium
(ii)	correct formula [1]
	If ionic mark 1 only cond 2 bp and 2 nbp around selenium 1 bp and 3 nbp around both chlorine atoms
(iii)	the ionic compound higher melting point / boiling point / less volatile conducts when molten or aqueous, covalent compound does not is soluble in water, covalent is not / ionic insoluble in organic solvents, covalent soluble in organic solvents harder any two note there has to be comparison between the ionic compound and the covalent compound not density

(c) base
not alkali
accepts a proton
accepts hydrogen ion / H^{+}only [1]
proton and H^{+}[2]
4 (a 3 bp and 1nbp around phosphorus [1]
1 bp and 3nbp around each chlorine [1]
(b) (i) $\mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{HCl}+\mathrm{H}_{3} \mathrm{PO}_{3}$ [1]
(ii) acid solutions same concentration [1]
measure $\mathrm{pH} / \mathrm{pH}$ paper/Universal indicator [1]
hydrochloric acid lower pH [1]
colours of Universal indicator can be given as red<orange<yellowignore precise pH values as long as HCl is lower than $\mathrm{H}_{3} \mathrm{PO}_{3}$
OR Acid solutions same concentration [1]
add magnesium or any named metal above Hydrogen in reactivity series but not above magnesium
calcium carbonate or any insoluble carbonate [1]
hydrochloric acid react faster/shorter time [1]
OR acid solutions same concentration [1]
measure electrical conductivity [1]
hydrochloric acid better conductor/bulb brighter [1]
OR acid solutions same concentration [1]
add sodium thiosulphate [1]
hydrochloric acid forms precipitate faster/less time [1]
(iii) sodium hydroxide/sodium carbonate [1]titration cond on correct reagent[1]second mark scores for mention of titration /burette/pipette/indicator.experimental detail not requiredany named soluble calcium salt e.g. calcium chloride/nitrate/hydroxide[1]precipitation/filter/decant/centrifuge
5 (a)(i) boiling [1]
(ii) lower temperature or over temperature range or no plateau [1]
(iii) direct continuation of E to F [1]
(iv) close or touching far apart [2]
fast and random [1]
cannot move apart can move apart [2]
(b)(i) calcium ethanoate + hydrogen [1]
(ii) zinc oxide or hydroxide [1]
(c) $\quad \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$ [2] reactants [1] products [1]

