Question	Answer	Marks	Guidance
1(a)(i)	proton acceptor;		A alternative words to 'acceptor' e.g. 'receiver' I references to pH
	M2 does not accept (protons) readily OR less able to accept protons (than strong bases);	2	A 'hydrogen ion' or 'H ⁺ ' for proton I accepts fewer/less protons
(a)(ii)	M1 same <u>concentration</u> of both bases;		
	M2 measure their pH;		 A suitable method e.g. universal indicator or pH paper or pH meter I litmus or methyl orange or phenolphthalein I titration methods for M2 and M3
	M3 the higher pH is the stronger base;	3	 A suitable colours of both weak strong bases e.g. ethylamine is (greeny)blue, NaOH is darker blue/purple A alternative methods for M2 and M3 e.g. measure conductivity (M2) and high conductivity is the stronger base (M3) e.g.add aluminium/Al (M2) and stronger base gives faster rate of effervescence/more fizzing/more bubbling (M3)
(b)(i)	$_{3}CH_{2}NH_{2} + H_{2}SO_{4} \rightarrow (CH_{3}CH_{2}NH_{3})_{2}SO_{4}$ species; balancing;		 A multiples I state symbols A one mark for correct product
	the salt is ethylammonium sulfate;	3	A close spellings A diethylammonium sulfate

Question	Answer	Marks	Guidance
(b)(ii)	sodium hydroxide / calcium hydroxide / NaOH / Ca(OH) ₂ ;	1	any Group 1 or Group 2 hydroxide or oxide
(c)(i)	<i>Any two from:</i> (particles move in) random motion;		
	(particles) collide;		A alternative phrases for collide
	(particles) move from a region of high concentration to low concentration;	2	A down a concentration gradient
6(c)(ii)	M2 it has a lower (relative) molecular mass (than HBr); M3 ethylamine diffuses faster (than HBr);	3	 A ethylamine is less dense A ethylamine is a lighter molecule but I 'ethylamine is lighter' I ethylamine is a smaller molecule A ethylamine molecules or particles move faster A ECF for M2 and M3 if A is given e.g. HBr diffuses faster for M3 because it is a lighter molecule for M2 A ECF for M2 if B is given e.g. they diffuse at same rate for M3 because molecules weigh the same for M2

2 (a (i) two atoms per molecule

- (ii) 7e in outer shell or level / same number of outer electrons / need to gain one electron [1]
- (iii) different number of energy levels / different number of electrons
- (iv)

halogen	solid, liquid or gas at room temperature	colour	
chlorine	gas	yellow / yellow green / green	
bromine	liquid	<u>brown</u> / red- <u>brown</u> / orange- <u>brown</u> not: red / orange	
iodine	solid	black / grey / silver-grey / purple / violet NOT : blue-black	

NOTE: one mark for each vertical column

- (b) correct formula, AsF3[1]3nbps and 1bp around all 3 fluorine atoms[1]3bps and 1nbp around arsenic atom[1]
- (c) (increased) light increases / causes forward reaction / light causes
 AgCl reacts with CuCl
 [1]
 (increased) light increases the amount of silver (and so darkens glass)
 [1]
 decrease in light reverses reaction / uses up silver / silver reacts (and so reduces darkness)[1]

[1]

[2]

3	(a	(i)	photosynthesis or a photochemical reaction not an example, question requires a process not devices which convert light into electricity	[1]
		(ii)	cell accept battery not generator	[1]
	(b)	(i)	correct formula	[1]
				[1] [1]
		(ii)	correct formula	[1]
				[1] [1]
		(iii)	the ionic compound higher melting point / boiling point / less volatile conducts when molten or aqueous, covalent compound does not is soluble in water, covalent is not / ionic insoluble in organic solvents, covalent solut in organic solvents harder any two	ble [2]
			note there has to be comparison between the ionic compound and the covale compound not density	
	(c)	bas		[1]
			t alkali cepts a proton	[2]

not alkali accepts a proton accepts hydrogen ion / H⁺ **only** [1] proton and H⁺ [2]

4	(a		p and 1nbp around phosphorus p and 3nbp around each chlorine	[1] [1]	
	(b)	(i)	PCl_3 + $3H_2O \rightarrow 3HCl$ + H_3PO_3	[1]	
		(ii)	acid solutions same concentration measure pH/pH paper/Universal indicator hydrochloric acid lower pH	[1] [1] [1]	
			colours of Universal indicator can be given as red <orange<yellow as="" h<sub="" hcl="" ignore="" is="" long="" lower="" ph="" precise="" than="" values="">3PO₃</orange<yellow>		
			OR Acid solutions same concentration add magnesium or any named metal above Hydrogen in reactivity series but not abo magnesium	[1] ove	
			calcium carbonate or any insoluble carbonate hydrochloric acid react faster/shorter time	[1] [1]	
			OR acid solutions same concentration measure electrical conductivity hydrochloric acid better conductor/bulb brighter	[1] [1] [1]	
			OR acid solutions same concentration add sodium thiosulphate hydrochloric acid forms precipitate faster/less time	[1] [1] [1]	
		(iii)	sodium hydroxide/sodium carbonate titration cond on correct reagent second mark scores for mention of titration /burette/pipette/indicator. experimental detail not required	[1] [1]	
			any named soluble calcium salt e.g. calcium chloride/nitrate/hydroxide	[1]	
			precipitation/filter/decant/centrifuge		

5 (a)(i)	boiling			
(ii)	lower temperature or over temperature rang	[1]		
(iii)	direct continuation of I	E to F	[1]	
(iv)	close or touching cannot move apart	far apart fast and random can move apart	[2] [1] [2]	
(b)(i)	calcium ethanoate + h	ydrogen	[1]	
(ii)	zinc oxide or hydroxid	е	[1]	
(c)	CH₃COOH + NaOH < reactants [1] pro	[≘] CH₃COONa + H₂O ducts [1]	[2]	

TOTAL = 12